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ABSTRACT

As we approach the era of exascale computing, the role of distri-
butions to summarize, analyze and visualize large scale data is be-
coming more and more important. Since histograms continue to
be a popular way of modeling the underlying data distribution, we
propose a scalable and distributed framework for computing his-
tograms from scalar and vector data at different levels of detail
required by various types of analysis algorithms. We present ef-
ficient parallel techniques for histogram computation from regular
as well as rectilinear grid data. We also study a technique called
cross-validation to estimate the quality of computed histograms
as a model of the actual data distribution. We parallelize cross-
validation in a scalable manner to support histogram evaluation and
selection of histogram parameters such as number of bins. We also
present our distributed software framework for supporting science
applications which require large scale distribution-based data anal-
ysis. The presented case studies highlight how the proposed algo-
rithms and the related software benefit information theoretic and
other distribution-driven analysis.

1 INTRODUCTION

Distributions play a crucial role in numerous analysis and visualiza-
tion techniques. For example, conventional methods such as trans-
fer function design for volume rendering are often guided by locally
and globally computed distributions [10, 13]. In recent years, as we
approach the era of exascale computing, the role of distributions to
effectively manage, analyze, and visualize data is emphasized even
more. On one hand, certain types of simulations such as stochastic
or ensemble simulations produce data in the form of distribution.
On the other, emerging algorithms driven by uncertainty [26] or in-
formation theory [28, 4] often require distributions of many types to
be computed at various scales from the data. Since these methods
focus more on different analysis using the distributions, computing
distributions at multiple scales efficiently and accurately remains a
challenging problem.

Distributions are either represented by a set of parameters or as a
histogram. Histograms are widely used for scientific data because
they are able to produce a meaningful summary even when the data
cannot be modeled by any known type of distribution. However, the
process of converting large amounts of raw data into histograms is
challenging. First, the method of computing histogram from data
may vary based on the data type and its spatial organization. For ex-
ample, defining and partitioning a range for vector quantities may
not be trivial. Also, scientific data are available in different type
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of grids, including regular grids, rectilinear grids, curvilinear grids,
or even unstructured grids. Second, depending on the analysis task,
histograms may be needed at different resolutions (in terms of num-
ber of bins) and at different levels of detail such as a global his-
togram for the entire data, a histogram for each data block, or even
a point-wise histogram for each voxel. To achieve this, one or mul-
tiple scans of the data may be required. Third, as histograms with
different parameters, most importantly value range and number of
bins, model the underlying data distribution with different levels of
accuracy, the parameters should be carefully selected.

To address these issues, this paper proposes a framework for effi-
cient computation of histograms for large-scale scientific data. The
broader focus of this paper is on this distributed and scalable frame-
work for computing histograms from both vector fields and scalar
fields at various resolutions and level-of-details from large datasets.
In particular, we identify a set of key challenges related to this and
propose novel solutions to them. This includes an algorithm for
computing histograms from vector directions in a scalable manner,
an algorithm for computing histogram from rectilinear grid data,
and a distributed method for analyzing accuracy of histogram rep-
resentation.

To compute histograms at multiple resolutions from vector data
based purely on vector directions, we adopt geodesic grid based
spherical partitioning to develop a hierarchical parallel method.
Moreover, we provide an efficient weighted vertex method for com-
puting histograms from rectilinear grid data. We also utilize a sta-
tistical technique known as cross-validation to estimate the quality
of a histogram as a model of the data and use this method to guide
parameter selection for histograms. However, this technique in-
volves multiple passes through the data which limits its use on real
and large data. So we propose a scalable and distributed method of
cross-validation to enable fast evaluation and parameter selection
of large number of histograms computed from extreme scale data.
Finally, we demonstrate that these techniques benefit information
theory driven data analysis in large scale science applications and
they can be useful for other types of distribution based analysis as
well.

The remainder of this paper is organized as follows: Section 2
summarizes the related work. Section 3 explains distributed com-
putation of histograms at different levels. Histogram computation
for rectilinear grids is covered in Section 4. Distributed cross-
validation is the focus of Section 5. Applications with case studies
are discussed in Section 6, followed by a description of our software
platform in Section 7. A detailed performance analysis in Section 8
is followed by conclusions in Section 9.

2 RELATED WORK

Fast and parallel histogram computation is considered a perti-
nent problem in many different fields which extensively use his-
tograms such as visualization, image analysis, computer vision
and databases. An early work [8] on parallel image processing
proposes a distributed algorithm for computing global image his-
togram by combining local ones. GPU-based parallelization of
histogram computation is a complementary and well-studied prob-
lem [6, 19, 15]. Also, the wide use of mutual information, a joint



distribution based similarity measure, has motivated research on its
GPU-based parallel computation [21, 12]. The limitation of these
GPU-based approaches are that they are designed for in-core com-
putation, but not for distributed environment. Also, they are em-
ployed to compute entropy or mutual information for the entire data
domain, not for per location computation. In contrast, we focus on
processing extremely large data on a distributed platform, and com-
puting histograms at various levels of detail.

Distribution-based analysis of scientific data is an emerging area
to be further explored in coming years. The strategy of hierarchical
block-based processing enables comparing and grouping of blocks
based on distributions [9]. Another recent work [26] shows how
to visually convey the uncertainty associated with histograms com-
puted at various levels of details. Martin and Shen [14] propose
histogram spectra, a collection of histograms defined over a range
of sampling frequency, to achieve interactive level-of-detail render-
ing of large scale time-varying data. As these techniques focus on
different types of analysis, all of them underline the importance of
a scalable technique for computing histograms.

Various techniques are available for determining histogram pa-

rameters. Sometimes, heuristic-based formulae such as
√

N where
N is total number of observations, or Sturges’ formula [20] are used
to estimate number of bins. Some other techniques such as Doane’s
formula [20], Scott’s normal reference rule [20] and Freedman and
Diaconis rule [7] rely on the basic statistics of the data. This paper
studies and parallelizes cross-validation [17, 3, 24, 22], a parameter
selection method which does not assume availability of any statistic
of the data other than the histogram itself. Unlike the other meth-
ods which return an optimal number, cross-validation evaluates the
parameter space and returns a goodness of fit measure also for the
sub-optimal parameters. A recent work by Shimazaki et al [23] op-
timizes a cost function to objectively select bin width for a specific
type of histogram used in neurophysiology research.

3 DISTRIBUTED HISTOGRAM CONSTRUCTION

Analysis algorithms process data at different levels of detail. For
example, one algorithm may analyze blocks of size 83, while an-
other may operate on blocks of 163. Similarly, different algorithms
may work with histograms of different resolutions (in terms of num-
ber of bins). Our objective is to compute a set of histograms which
can produce many other histograms required to support a wide va-
riety of algorithms.

3.1 Histogram Computation

The core operation in histogram computation is a mapping from
the n-dimensional data values to the bin IDs, denoted by f : Rn →
[1,K], where each of the K bins contains one value, the frequency.
The proposed distributed computation is independent of the exact
method used for this mapping.

3.1.1 Histogram from Scalar Data

In general, computing a histogram from scalar observations is rela-
tively straightforward. Given the range of scalar values, denoted by
[m,M], and a bin width h, the bin ID I for a scalar s can be simply
obtained by: I = ⌊ s−m

h ⌋. If the value range is not known, an addi-
tional pass through the data is required to obtain that. In distributed
computation, each block can compute its own range, and then the
blocks can communicate among themselves to determine the global
range.

3.1.2 Histogram from Vector Data

Computing a histogram from a vector field is challenging, since
there is no standard way to specify and partition the value range.
One strategy is to use some related scalar quantity such as vec-
tor magnitude for the histogram computation. But to compute his-
tograms purely based on vector directions, a suitable mapping from

the vector space to histogram bins is needed. In 3D (2D), a vec-
tor can be defined in terms of its spherical (polar) coordinates, so
the surface (circumference) of a unit sphere (circle) represents the
domain of vector directions. So, the problem of mapping reduces
to partitioning a unit sphere into patches of equal area. Given that
partitioning, each vector direction is assigned a bin based on which
patch it intersect with (Figure 1a).

(a) (b)

Figure 1: (a) Bin assignment of vectors based on spherical par-
titioning.. (b) Recursive subdivision of a triangle patch during
geodesic grid construction.

Xu et al. [28] achieves this by adopting Leopardi’s algo-
rithm [11], which partitions a sphere into a specified number of
quadrilateral patches of nearly equal area. However, this algorithm
is not quite suitable for computing a histogram at multiple resolu-
tions, because there is no guaranteed correspondence between the
patches at resolution K and those at 2×K.

Figure 2: Construction of geodesic grid at different resolutions
(Number of triangle patches are 20, 80 and 320 from left to right).

To address the issue, we utilize a geodesic grid to partition the
spherical space, as approach widely used by geoscientists to model
the earth’s surface [18, 27]. The geodesic grid starts from an icosa-
hedron (or other polyhedron) inscribed in a unit sphere and recur-
sively tessellates it into finer ones. The tessellation of a triangular
face (Figure 1b) into four equal area triangles is achieved by cre-
ating four vertices at the midpoints of the triangle edges. After
tessellation, the newly created triangles are projected onto the unit
sphere. This implies that, at any resolution, each triangular face
of the polyhedron has nearly equal area and can be used as a bin.
Moreover, this subdivision enforces a parent-child relation between
the bins of the consecutive levels. By combining the frequencies
of the finer patches, it is possible to compute the frequency of the
parent patch without accessing the data. Hence, this algorithm en-
ables computation of histograms at multiple resolutions with one
pass through the data.

After tessellation, each vector needs to scan through all the
patches to find the one it intersects with. To accelerate this bin
assignment stage, a pre-computed 2D lookup table of bin IDs at
sampled spherical coordinates (φ , θ ) is used.

3.2 Distributed Histogram Computation

In a distributed environment, blocking of the data and assignment of
a group of blocks to each processor precedes the actual histogram
computation.



Figure 3: Distributed block-wise and global histogram computation
by multi-round reduction.

3.2.1 Multilevel Histogram Computation

Analysis tasks may require histograms at different levels of detail
such as voxel level, block levels of varying sizes and the global level
containing the entire data. The multi-level computation is possible
with one scan of the data due to the following property: The his-
togram of a larger region can be accurately constructed from the
histograms of its partitions, if they use the same resolution. Simple
addition of the frequencies of corresponding bins is sufficient. This
indicates that the histogram of a block of dimension 2B×2B×2B
can be constructed by combining the histograms of the B×B×B
blocks contained in it.

Our framework supports histogram computation at three dif-
ferent levels: block-wise, global and local. For block-wise his-
togram mode, the data is partitioned into blocks of size corre-
sponding to the finest level of detail needed (say 163). Then
a histogram per block is computed and stored. During anal-
ysis, the stored block histograms can be read back and itera-
tively merged in parallel until the histograms of the some re-
quired level are obtained (Figure 3). Merging the histograms all
the way down to a single one produces the global histogram.

Figure 4: Local histogram computation
at each point within a block.

We also compute
point-wise or
voxel-wise or local

histogram, which
is the finest level
of detail possibly
needed. Ideally, the
local histogram at
each point or voxel
is the histogram
based on the data
point itself. Such
histograms can be
combined together
to obtain block his-

tograms of any size. However, we compute a more general quantity
at each point based on a neighborhood of size δ (represented by
a 3D sub-volume of size (2× δ + 1)3). This neighborhood is slid
across the data domain in all dimensions (Figure 4). We compute
this because of its use it information theoretic analysis (to be
explained in Section 6). When data is distributed among processors
as blocks, the points at the boundary of a block need data from
outside the block to construct the neighborhood. This is why each
block is read with extra ghost layers of width δ in all dimensions.
Alternately, the neighboring blocks can exchange ghost layers
among themselves before computation starts.

3.2.2 Multi-resolution Histogram Computation

Also, histograms of different resolutions (number of bins) may be
required for different tasks and datasets. To our benefit, a low res-
olution histogram can be accurately constructed from its higher

resolution counterpart. A histogram of K
t

bins can be accurately
computed by adding up the frequencies of all the consecutive bin
groups of size t of a histogram of K bins. By applying this oper-
ation progressively, hKp

(R) for a given region R can be accurately

constructed from hK1
(R), if Kp = t p ×K1. Hence, in practice, a

high-resolution histogram is computed at each level. As needed,
they are first merged to form the histogram(s) of the desired level,
and then coarsened by grouping the bins to the desired resolution.

4 HISTOGRAM COMPUTATION ON RECTILINEAR GRIDS

In this section we extend our consideration of histogram computa-
tion to rectilinear grids. In particular, we consider how to compute
the local histogram at each vertex of a rectilinear grid. At each ver-
tex v, we define a neighborhood box of size t (a 3D cube centered
at v with side length 2t in each dimension), and construct the his-
togram within the box. (All methods presented here can also be
used directly at block level, by considering the neighborhood box
as a block.) Unlike regular grids where vertices represent a uniform
sampling over the volume and have the same weight, in rectilinear
grids, due to the rectilinear structure we cannot apply the regular-
grid approaches since they do not guarantee enough accuracy (i.e.,
data samples are not properly weighted). So we present three meth-
ods suitable for rectilinear grids and an optimized version of the
best among the three.

Method 1: Sampling: For a given neighborhood box, we uni-
formly sample all the cells contained in it with sufficient numbers
of points. For cells on the box boundary that partially intersect the
box, we only include those sample points that are inside the box.
For each sample point, we interpolate to obtain the data value, find
out which histogram bin the value belongs to, and assign the weight
of this sample point to that bin. The weight of a sample point is the
volume of the cell divided by the number of sample points in the
cell. This method offers a trade-off between speed and accuracy,
controlled by the sampling density.

Method 2: Contour Spectrum: This method is based on con-
tour spectrum [2], which is restricted to scalar data over a tetra-

hedral mesh. It computes the exact isosurface area at each scalar
value from infinite and continuous sample points over each tetra-
hedron, and thus the resulting histogram is accurate and free from
sampling errors. To apply this technique to rectilinear grids, we
split each rectilinear cell into 5 tetrahedra, and calculate the volume
distribution of each tetrahedron into histogram bins using contour
spectrum by integrating the resulting B-spline function over the bin
ranges covered. For each cell on the neighborhood-box boundary,
we only consider the part within the neighborhood box, split this
part into 5 tetrahedra, and apply the same process.

This method is usually more accurate than sampling without the
need to worry about the sampling density. However, different ways
of splitting a rectilinear cell might lead to quite different results.

Method 3: Weighted Vertex: This method resembles the
method of computing local histograms on regular grids (Sec-
tion 3.2.1). For each vertex, we consider the grid vertices in-
side its local neighborhood box. In addition, the intersection
points between the box boundary faces and the grid edges, as
well as the 8 corners of the box, are included. Data values at
these additional points on the box boundary, namely the pseudo-
vertices, are obtained via interpolation. The pseudo-vertices and
the grid vertices inside the box form the box vertices. Each
box vertex is assigned to a bin based on its data value, and its



vertex weight is added to the bin. The volume of the axis-
aligned bounding box of the midpoints of the 6 edges inci-
dent to a box vertex determines its weight. For pseudo-vertices,
the weight only includes the portion inside the box (Figure 5).

Figure 5: A 2D illustration of
the weighted vertex method. The
green and yellow points on the box
boundary are examples of pseudo-
vertices.

The execution time of
this method is propor-
tional to the number of
box vertices. If the aver-
age number of box ver-
tices is k × k × k, then
the overall runtime for
computing all local his-
tograms is proportional
to O(k3). Results in
Section 8.2 indicates that
this is the fastest method
among the three pre-
sented so far.

As for accuracy,
weighted vertex would perform badly if the data values between
adjacent grid vertices vary dramatically, which typically does
not happen since a reasonable rectilinear grid uses higher grid
resolution in such feature-rich regions. Therefore weighted vertex
has a good accuracy for typical rectilinear grids. In Fig. 6 we show
the local entropy results of the three methods on a representative
2D scalar field, where the difference of scalar values between
neighboring vertices is roughly the same over the whole mesh.
We can see that the weighted vertex method can produce a local
entropy result similar to those of the other two methods. In other
words, it achieves a similar good accuracy with the fastest running
time, and should be the method of choice.

Figure 6: Color maps of local entropy values on a representative
2D scalar field.

Efficient Algorithm for Weighted Vertex: Sliding Window:
We can further optimize the efficiency of the weighted vertex
method. Since the neighborhood boxes of two neighboring ver-
tices share many common vertices, local histogram of a vertex can
be updated from that of its preceding neighbor. We first look at the
easier case of regular grids (Figure 7(a)). To build the histogram for
vertex B given the histogram of A, we only need to remove the con-
tribution of vertices a,b, · · · ,e (in the back-slice plane), and add the
contribution of a′,b′, · · · ,e′ (in the front-slice plane) into the bins.
All vertices in common for A and B do not need to be recomputed.
This updating accelerates the sliding neighborhood approach de-
scribed in Section 3.2.1. Given a neighborhood box of resolution
k3, this brings down computing cost to 2k2 from k3.

The main idea is the same for rectilinear grids. We consider the
general case where the boundaries of the neighborhood box are not
on the grid lines (see Fig. 7(b)). When we slide the window center
from A to the next grid point B, we need to add two new slices
S1,S4 which are the front and back slices of the neighborhood box
of B (type (1) updates), and remove two old slices S′1,S

′
4 which are

the front and back slices of A (type (2) updates). Also, we need to
update two slices S′2,S3 due to weight changes (type (3) updates):

(a)

B

a’

b’

c’

d’

e’

a

b

c

d

e

A

1S3S 2SS’1S’2
S’3b

S’4 4S

S’3a

B

(b)

A

Figure 7: Sliding window: (a) for regular grids, (b) for rectilinear
grids. The blue solid box is for A and the red solid box is for B.

S′2 is the slice on the grid line right after the front slice of A; the
weights were originally constrained by this front slice but now not
any more. Similarly, S3 is on the grid line right before the back
slice of B, and the weights are now newly constrained. Moreover,
we need to perform the following type (4) updates: we add new
slices on grid edges such as S2, and remove old slices on grid edges
such as S′3a and S′3b. Overall, there are four types of updates.

Note that there can be an unbounded number of type (4) up-
date slices in one sliding step due to the rectilinear structure. How-
ever, in the entire window sliding process, each grid line will en-
ter the box once and then leave the box once. Thus, each grid line
causes one slice of addition and one slice of removal. Also, the total
number of grid lines equals to the total number of window-sliding
steps, and thus we have one slice addition and one slice removal per
window-sliding step on an average for type (4) updates. Since there
are 2 slices of work in each of types (1)-(3) updates, the total work
per window-sliding step is 8 slices on an average.

Suppose the average number of box vertices is k× k × k, then
the average work per histogram is O(k2), as opposed to O(k3) in
the original weighted vertex method. Typically this improvement is
significant, especially for large datasets and/or large box sizes.

Parallel Computation: For all the methods presented, we par-
allelize them by concurrently performing the sequential computa-
tion on each partition of the grid assigned to each processor after
getting the ghost layers through communication, if needed.

5 DISTRIBUTED PARAMETER SELECTION OF HISTOGRAMS

A histogram is defined by two parameters: value range and bin
width (equivalent to number of bins). While the bin width can be
non-uniform, here we restrict the discussion to uniform bin width.
Since the histogram represents an estimate of the probability den-
sity function (PDF) of an unknown distribution, there is no straight-
forward way to know the parameter values at which the histogram
best approximates that PDF. The range of the data values can guide
the histogram range and start point. But there is no clear indicator
for choosing the histogram resolution. This is, however, important
because at a suboptimal resolution, histogram modality may change
and important features may be lost. On the other hand, at a very
high resolution, the histogram may over-fit the sampled data points.

5.1 Cross-Validation

In general, given a model with unknown parameters and a dataset, a
model evaluation technique called cross-validation is used to assess
how well the model fits the dataset. This technique is also applied to
evaluate how well a histogram models the underlying distribution
of the data from which it is computed. Since the actual parame-
ters of the data distribution are not known, a true validation of the
histogram is not possible.

Here we provide a brief account of cross-validation [17, 3, 24,
22] as histogram parameter estimator. For a given sample x, if f (x)



Figure 8: Cross-validation of a 643 block from FLASH dataset over
a wide range of bin numbers.

denotes its true density and f̂h(x) denotes the density estimated by a
histogram of bin width h, then integrated square error (ISE) over all
samples serves as a measure of closeness. ISE between the actual
and the estimated distribution is given by:

ISE =

∫

(

f̂h(x)− f (x)
)2

dx

=
∫

f̂h(x)
2dx−2

∫

f̂h(x) f (x)dx+
∫

f (x)2dx (1)

Hence, the goal of parameter (h) selection is to find h which mini-
mizes the ISE. The first term in its expansion (Equation 1) is com-
putable from the histogram. The third term, although unknown, is
independent of h and can be regarded as a constant. Estimation of
the second term is crucial in estimating ISE for a given h. As the
second term essentially means the average of the estimated density
function f̂ (x), Rudemo [17] uses a leave-one-out strategy to gener-
ate multiple histograms from a set of given samples, and computes
their average as the second term. Interestingly, Rudemo [17] pro-
vides a closed form histogram estimator, denoted by Q, which al-
lows to estimate the ISE for a data with n observations and K bins
with fixed bin width h. It is defined as:

Q =
2

(n−1)h
− n+1

n2(n−1)h ∑
K

nk
2 (2)

We use this formula to provide an assessment of the histograms
computed with different resolutions from a data set. Figure 8
presents the cross-validation risk scores for the global histogram
of a 643 block from FLASH simulation data (see Section 6). The
scores suggest that 512-4096 is the optimal number of bins for this
data. Observing the histograms in insets, we can see that the two
modes of the histogram are prominently visible roughly within this
range. At a coarser resolution, the smaller right mode disappears
and at very high resolutions, noisy peaks start to appear.

5.2 Parallelized Cross-Validation

Serial cross-validation can be quite prohibitive on large datasets
over a large range of histogram resolutions because each iteration,
representing a resolution, requires a complete scan of the data. Run-
ning different iterations in parallel is not scalable since the number
of iterations gets limited by the size of the parallel grid. In this pa-
per, we propose two strategies for scalable parallel cross-validation.

Multiple Data Access Method: After loading blocked data in
parallel, the histogram of each block is computed for a wide range
of histogram resolutions. Then, for each resolution, the block his-
tograms are merged in parallel to compute the respective global

histograms (Figure 3) in a central processor. The central proces-
sor then computes the cross-validation risks of all the global his-
tograms, plots them and finds the minimum (or minima). This
method has a limitation: even though it parallelizes each scan of
the data, it scans the data as many times as the serial version.

Single Data Access Method: The above method can be ac-
celerated even more by restricting the data access to one. In this
version, the range of histogram resolution, spanning from Nm to
NM, is sampled based on a geometric progression. Starting with the

highest histogram resolution NM , following iterations examine NM

2 ,
NM

22 and so on. The algorithm stops at Nm after p iterations where

NM = 2p−1Nm. Choosing histogram resolutions in this way allows
us to compute the histograms without repeated scanning of the data
(Section 3.2.2). The acceleration comes at the cost of sparse sam-
pling of the histogram resolution range. While using this method,
the suggested optimal bin ID is the power of 2 closest to the actual
number which is reasonably accurate in most cases.

If computation time is not a major concern, a shorter range of
resolutions can be thoroughly scanned (using first method) around
the approximate resolution returned by the second.

6 APPLICATIONS

Figure 9: Fluid pressure along pipe (top) and respective entropy
field (bottom) from a Nek5000 scalar data.

6.1 Information Theory Based Science Applications

Information theory based visualization techniques often require
Shannon’s entropy and related metrics computed at different lev-
els of detail from the data. For example, streamline placement
can be guided by pointwise entropy [28], isosurfaces can be com-
pared based on the global mutual information between them [4].

Figure 10: A few blocks from a
Nek5000 vector field. Each glyph
is colored based on the entropy of
its block.

Computation of all these
metrics require the data
distribution (or joint distri-
butions) at the appropriate
level of detail. Hence, the
proposed framework for
histogram computation is
directly applicable to scal-
able computation of Shan-
non’s entropy and related
metrics in global, block-
wise or pointwise mode.

In particular, two
computational science
codes, Nek5000 and
FLASH, have motivated
this research. Nek5000
is a Navier-Stokes solver

used for the simulation of fluid flow, convective heat and species
transport, and magnetohydrodynamics in 2D and 3D. It is based
on a spectral element solver [5] and features an unstructured mesh
consisting of high-order hexahedral cells. FLASH is an adaptive
mesh code used primarily for astrophysics and cosmology [25].



Here we present an example from Nek5000 which simulates fluid
flowing though a straight pipe. We are able to read and analyze the
data in situ in this example. Figure 9 presents the fluid pressure
field (top). Since pressure varies linearly along the length of the
pipe, the corresponding point-wise entropy field (bottom) remains
more or less constant at a high value. In Figure 10, a portion of
a vector field produced in another Nek5000 example is shown.
Here the glyphs representing vectors have been color coded using
the entropy of their respective blocks. This helps to differentiate
between blocks of varying complexity. A block containing a vortex
is present (in bright blue) in the segment shown.

6.2 Spatio-Temporal Analysis

(a) Isabel hurricane dataset with a moving vortex.

(b) Time histograms of three blocks and their ac-
tual locations.

Figure 11: A case study showing feature localization in spatio-
temporal domain using block-wise time histograms.

We present another application to highlight the importance of
histogram based analysis beyond information theory. We can em-
ploy our framework to fast compute time histograms [1] from large
scale data which are ordered stacks, growing horizontally, of his-
tograms computed from multiple time steps. When computed glob-
ally, they capture the dynamic behavior of the data over time. How-
ever, global time histogram cannot reflect a feature’s behavior in the
spatial domain. Figure 11 shows that time histograms computed at
block levels can serve as visual signatures of a features behavior
over space and time.

Equidistant time steps taken from the Isabel hurricane (500 ×
500×500) simulation (Figure 11a) shows a moving vortex. In gen-
eral, a uniformly spread histogram (represented by a bright vertical
strip on a time histogram) should indicate the presence of a vortex
or similarly turbulent region [28]. Hence, given the time histogram
of a block, band(s) formed by such adjacent bright strips signifies
the duration(s) for which the moving vortex has some overlap with
the block. On the other hand, given a time step, the user can quickly
scan though various time histograms to narrow down on the blocks
where the vortex appears. Figure 11 presents three block-level (253)
time histograms (top row) computed from the wind velocity fields
and the corresponding blocks (highlighted by red boxes on the bot-
tom row). The time histograms clearly indicate the hurricane’s pres-
ence in the three blocks in three different time steps.

7 SOFTWARE

We are developing a software framework called Information Theo-
retic Library (ITL) to extend the research benefits to scientists and

Table 1: Testing Datasets.

Dataset Type Grid Resolution Size

Plume
Scalar

Vector
Regular

504×504

×2048

2.1GB

6.2GB

Nek
Scalar

Vector
Regular

1024×1024

×1024

4.0GB

12GB

Rect-S Scalar Rectilinear
704×540

×550
2.4GB

Rect-L Scalar Rectilinear
1408×1080

×1100
19GB

developers of science applications. Figure 12a illustrates the capa-
bility of the software. The first stage converts various types of data
into histograms of desired level and resolution. Cross-validation is
optionally performed while computing histograms.

(a) (b)

Figure 12: (a) Data analysis tasks supported by our software frame-
work. (b) ITL library structure and in situ usage in a simulation.

ITL is a parallel C/C++ based library containing a set of
lightweight tools, which can be plugged into a simulation code
for in situ analysis, or can be used as a stand-alone tool for post-
processing of simulation results. The library itself has two main
components, ITL API and ITL core (Figure 12b). ITL API provides
necessary wrappers to make ITL functionalities compatible with a
simulation code. ITL core implements the main data-to-histogram
and histogram-to-entropy computation modules. The parallelism is
driven by an MPI-based library called DYI [16]. The end users,
who are the owners and maintainers of simulation codes, need to
access and modify only the ITL API to integrate their code to ITL.
ITL core and DIY are transparent to the users.

8 PERFORMANCE

This section shows the performance scalability of our implementa-
tion. The timings are measured on the supercomputer Surveyor at
the Argonne Leadership Computing Facility. Surveyor is an IBM
Blue Gene/P supercomputer with 1024 quad-core processors. All
tests are conducted in smp mode, which runs only one core at each
processor. Since every communication takes place between differ-
ent processors in this mode, the worst possible overhead due to
communication is captured. The testing datasets are listed in Ta-
ble 1. Both Plume and Nek are regular grid vector data. We use the
vector magnitude per voxel to form a corresponding scalar field for
testing. This allows us to compare the performances between scalar
and vector fields because the data resolution is the same. Rect-S and
Rect-L are rectilinear scalar fields. All figures of the performances
are plotted in logarithmic scale for both x and y axes.
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Figure 13: Performance of histogram computation. 360 bins are used for all tests. (a)-(d). Performance of block-wise histogram computation.
B/P in the legend means the number of blocks assigned to each process. (e) Performance of global histogram computation. Legends S and
V mean scalar field and vector field respectively. (f)-(i). Performance of local histogram computation. N represents neighborhood size.
(j). Performance of cross validation for the scalar field of Nek. Symbols OFF, OPT, and NO-OPT represent no cross validation, optimized
cross-validation, and cross-validation without optimization respectively. Both x and y axes of all figures are in logarithm scale.

8.1 Histogram Computation on Regular Grids

Figure 13 analyzes the performances of the three supported modes,
global, block-wise and local, of histogram computation for regular
grids (Section 3.2.1).

Figures 13 (a) - (d) list the performance of block-wise histogram
computation. Since the number of blocks per processor can be spec-
ified by the user, we also measure the performance by varying this
parameter. We observe that the performances are close regardless
of the number of blocks.

Figure 13(e) lists the performance of global histogram computa-
tion for both scalar and vector fields from Nek and Plume dataset.
The computation time for vector fields is at least 5 time larger than
that for scalar fields. Computation of global histograms also re-
quires data communication to merge the histograms from all pro-
cessors (Section 3.2.1). Communication timing is not shown here,
since it always remains less than 1 second in all performed tests.

Figures 13 (f) - (i) show the performance of local histogram com-
putation under different neighborhood sizes. Compared to global
and block-wise computations, the computation time is larger, and
increases with neighborhood size. However, scalability is main-
tained regardless of the neighborhood size. This implies that our
implementation has good scalability when the computation load is
heavy. Better scalability of vector datasets in block-wise and global
computation (Figure 13 (b),(d) and (e)) also supports the claim.

To evaluate the performance of cross-validation, we measure its
performance for global histogram computation from Nek. Figure13
(j) shows the performance without cross validation run with 360
bins (Off ), non-optimized multiple data access cross validation run
through 1000 to 16000 bins in steps of 1000 (NON-OPT), and opti-
mized single data access cross validation run through 2 to 65535 in
powers of 2 (OPT) (Section 5.2). The scalability for non-optimized
cross validation is better than the other two, due to the higher com-
putation overhead of computing histograms at several resolutions.
The optimized cross-validation is at least 9 times faster than the
non-optimized one except on 512 processors (5x).
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Figure 14: Performance analysis of proposed methods for rectilin-
ear grids. (a) Runtime and scalability for sampling with d = 0.008
(△) and d = 0.004 (⋄), weighted vertex (�), and contour spectrum
(©). (b)-(c) Performance under different values of k (where the
average number of box vertices is k3) for sampling with d = 0.008
(△), weighted vertex (�), and sliding window (×). Both x and y
axes in (a) are in logarithmic scale. In (b) and (c), only y axis is in
logarithmic scale.

8.2 Histogram Computation on Rectilinear Grids

In Figure 14a, we present performance of the three proposed meth-
ods (sampling, contour spectrum and weighted vertex) on the Rect-
S dataset. For the sampling method we use two sampling densities
(with stepping distance d = 0.008 and d = 0.004 in each dimen-
sion). The neighborhood box size t used is 0.05 — the resulting
average number of the box vertices (recall Method 3 in Sec. 4)
was 43. The running time for computing local histograms of all
vertices vary almost linearly with the number of processors for all
three methods. The efficiency computed over the range of 128 to
1024 processors is 85%. Weighted vertex is generally much faster
than the other two methods. Contour spectrum is the slowest (run-
ning out of time for all runs except for on 1024 processors). Also,
the performance of the sampling method depends on the sampling
density, as expected.

Another important parameter influencing run-time performance
is the neighborhood-box size t. On both the Rect-S and Rect-L
datasets, we vary t to be 0.05, 0.10, 0.14, 0.20, and 0.28 (the re-



sulting average number of the box vertices, as mentioned above,
are k3 with k = 4,8,10,12 and 16 respectively) and run the sam-
pling (with d = 0.008), weighted vertex, and sliding window meth-
ods on 1024 processors. The results in Figures 14b and 14c show
that sampling is slower than the other two. It is too slow to be
even compared with the other two on Rect-L. For the weighted ver-
tex method, the running time grows fast with k. As mentioned in
Sec. 4, sliding window reduces this k3 units of work per histogram
to O(k2). The advantage of sliding window becomes apparent for
larger k and larger datasets.

It is interesting to observe that sliding window approach is a bit
slower than weighted vertex for k < 10, the same speed at k = 10,
and becomes much faster for k > 10. Considering the programming
overheads, this confirms our analysis that sliding window has an
average work of 8 slices per sliding operation (see Sec. 4).

We remark that when we run the tests with different numbers of
bins, the resulting running time is the same for histogram compu-
tation by sampling, weighted vertex and sliding window methods,
since the task of distributing each sample/vertex weight to a bin is
the same. However, more bins would slow down the contour spec-
trum method as the cells tend to have more bins to integrate over.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose an efficient and scalable technique for
computing large number of histograms from extreme scale scien-
tific data organized in regular or rectilinear grid. We also apply
cross-validation, a goodness of fit measure and parameter selection
technique, concurrently on a large number of histograms. This re-
search enhances information theoretic analysis of large simulation
data and applies to many other distribution based analysis.

However, since the framework is still being developed, there is a
plenty of scope for addition and improvement. To name a few, we
intend to add support for curvilinear or unstructured grid data gen-
erated by many simulations. We also plan to deal with histograms
with variable bin width. We are revisiting the histogram compu-
tation from vector data to take magnitude into consideration. Even
though we have the basic support for computing kernel density esti-
mation (the other form of representing distributions), we are work-
ing on optimizing and parallelizing it. Another major challenge to
be addressed in future is to efficient storage and searching of large
number of distributions.
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